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Sequential Design of Computer Experiments
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Abstract: Numerical simulations are increasingly used in science and society for the study of complex systems,

be it as a complement or a substitute to classical experiments. The design of computer experiments has become a

research �eld per se, complementing the legacy of classical experimental design while accounting for novel speci�cities.

Sequentiality is essential in many of the goal-oriented design approaches that have �ourished in such framework.

Copyright © 2017 John Wiley & Sons, Ltd.

1. On GP-based design of computer experiments

While multiple linear regression can be considered as a baseline statistical approach to model a response of interest as

a function of covariates in the set up of classical design of experiments and response surface methodology (Steinberg

and Kennet, 2014; Draper, 2014; Atkinson, 2015), in computer experiments (Morris, 2015) the approach that has

arguably become the most popular in the last decades is Gaussian Process (GP) modelling (Sacks et al., 1989b;

Koehler and Owen, 1996; Santner et al., 2003; Davis, 2014). One of the convenient features of GP modelling is that

predictive mean and variance functions are analytically tractable. In particular, the predictive variance (a.k.a. MSE, for

Mean-squared error, following the terminology of Sacks et al. (1989b)) and covariance (Samson, 2014) can be used

as basic bricks to drive the choice of design points. When working with a GP conditioned on available deterministic

evaluation results, the full conditional covariance structure (hence including the corresponding MSE function) solely

depends on the observation points and not on the associated responses � in the case of noisy observations with a

centred Gaussian noise independent of the GP, the conditional covariance depends also on the noise covariance but

still not on the noisy responses. It is thus relevant to de�ne design criteria, i.e. functions quantifying in some sense the

quality of �nite sets of points, in terms of the conditional covariance of the GP knowing that experiments are to be

performed at these points. One natural approach from the perspective of prediction, that generalizes the concept of

G-optimality from classical design of experiments, consists in minimizing the so-called MMSE criterion: the �tness of

candidate point designs is assessed in terms of the maximum MSE over the domain of interest assuming that the GP is

to be observed at these points. Minimizing MMSE is known to be cumbersome because the criterion itself is generally

non-convex, and also costly to evaluate as it is itself the global maximum of a future MSE function. Deterministic and

stochastic algorithms are used in Sacks and Schiller (1988) to approximately minimize MMSE relying on sequences

of addition/deletion operations on candidate designs. Beside MMSE, these algorithms are also applied to Maximum
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Entropy Sampling in the sense of Shewry and Wynn (1987). Let us note that the entropy criterion in question boils

down under standard Gaussian Process assumption to the determinant of the posterior covariance matrix associated

with candidate points, so that the Maximum Entropy Sampling approach coincides in the one-point case with MSE

maximization. Enriching a starting design by incorporating MSE-optimal points one at a time both in the design and

in the GP model (without hyperparameter estimation) until the target number of design points is met constitutes a

greedy approach to MMSE minimization, that is known to be sub-optimal but to achieve the same rates of decay than

the optimal strategy (Vazquez and Bect, 2011). On a di�erent note, as pointed out in Gramacy (2005), such approach

is known to be similar to MacKay's Active Learning (often referred to as �ALM�) strategy (MacKay, 1992). Coming

back to the entropy criterion, an alternative to Maximum Entropy Sampling proposed in Caselton and Zidek (1984) and

further studied in Krause et al. (2008) consists in choosing from a given �nite set of reference points a subset so as to

maximally reduce the entropy over the remaining reference points; as mentioned in the latter reference, this amounts

to maximizing a Mutual Information criterion. Yet another criterion that is more global than MSE but less cumbersome

to calculate than MMSE is the so-called IMSE criterion, the integral over prediction points (given any candidate point

as input) of the future MSE (See, e.g., Sacks et al., 1989a). Recent contributions towards e�cient computation and

optimization of the IMSE criterion include Harari and Steinberg (2014); Gauthier and Pronzato (2014); Gorodetsky

and Marzouk (2016); Gauthier and Pronzato (2017) and references therein. Under standard assumptions and unless

hyperparameters are re-estimated after intermediate evaluations, the criteria mentioned so far have in common not

to depend on observed responses but solely on previously visited points, so that the sequential generation of such

designs can be made o�-line. In contrast, a number of strategies used in sequential design of computer experiments

are response-adaptive (Flournoy and Oron, 2014), i.e. visited points depend on previous responses. Incorporating cross-

validation errors in sampling criteria is one way to make sequential design response-adaptive (See, e.g., Le Gratiet et al.

(2015)); in the next section, we will focus on response-adaptive criteria for speci�c goals such as global optimization

and level set estimation. Examples of the use of MSE/IMSE-based design abound in the methodological and applied

literature. In Sacks et al. (1989a), chemical kinetics problems were considered, while Sacks et al. (1989b) tackled a

circuit-simulator application. Also, a variant of IMSE integrating uncertainties on model parameters was introduced

in Allen et al. (2003), with an application to die casting process design. Christen and Sansó (2011) investigated

analogies between IMSE-based design and Active Learning in the sense of Cohn (1996) (referred to as ALC, following

Gramacy (2005)) and applied sequential design approaches to a climate computer model. On the other hand, the

use of GP-based design relying on maximum entropy sampling was illustrated in Currin et al. (1991) on a thermal

energy storage system example as well as on a circuit simulation example. Coming to algorithms relying on mutual

entropy maximization, while the motivating problem of Krause et al. (2008) is in sensor placement, other example

applications relying both on in-�eld experiments and on simulations on real world sensing datasets are tackled in Singh

et al. (2009), where the focus is on lake and river monitoring using multi-robot informative path planning. In Beck and

S. (2016), the Mutual Information approach of Krause et al. (2008) was revisited, and an original modi�cation of it

was demonstrated to outperform competitor strategies such as ALM and ALC on test cases including the emulation

of a tsunami model.

2. Focus on selected goal-oriented approaches

2.1. Global optimization

One of the reasons that have motivated the development of sequential design algorithms based on GPs is global

optimization. Due to their versatility and their feature of providing both a mean predictor and an associated predictive

variance in closed form, GP models constitute indeed a practical tool to address exploration/exploitation trade-o�s and

de�ne sequential design strategies aimed at globally optimizing functions (or improving over current best candidate
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points under tight evaluation budgets). Building upon seminal works, including notably Kushner (1964) and Mockus

et al. (1978); Mockus (1989) that laid down the foundations of sequential design with criteria like the Probability

of Improvement (PI) and the Expected Improvement (EI), global optimization algorithms based on GP models have

known a substantial development in the engineering community and beyond following Schonlau and Welch (1996);

Jones et al. (1998) and related works. The EI criterion remains as a quite popular in�ll sampling criterion (such criteria

are also known as aquisition functions in the machine learning literature, see e.g. Snoek and Adams (2012)), and

it enjoys both an analytical form combining the GP predictive mean and variance as well as theoretical results for

associated design strategies (Vazquez and Bect, 2010; Bull, 2011; Yarotsky, 2013; Rhyzov, 2016). Besides, EI has

been adapted to a number of situations including distributed optimization (Schonlau, 1997; Ginsbourger et al., 2010;

Janusevskis et al., 2012; Chevalier et al., 2014), constrained (Parr, 2012; Gramacy et al., 2016) and multiobjective

optimization (Knowles, 2005; Emmerich et al., 2006, 2011; Binois et al., 2015a; Feliot et al., 2017). Also, variations

of EI exist that handle uncertain GP model parameters (Ginsbourger et al., 2008; Benassi et al., 2011; Gramacy and

Polson, 2011), uncontrolled input variables (Williams et al., 2000; Janusevskis and Le Riche, 2013; Marzat et al.,

2013; Ginsbourger et al., 2014), as well as noisy (Huang et al., 2006b; Picheny et al., 2013) and multi�delity (Huang

et al., 2006a; Forrester et al., 2006, 2007; He et al., 2017) responses. One well-known limitation of EI is that it is a

myopic criterion, in the sense that it evaluates the bene�t of performing an evaluation (or a batch of them) as if it

were the last one, and while optimal strategies accounting for multiple steps are considered intractable (Osborne et al.,

2009; Ginsbourger and Le Riche, 2010), heuristic approaches have been proposed to alleviate the myopicity of EI while

remaining computationally tractable Gonzalez et al. (2016); Lam et al. (2016). On a di�erent note, several paradigms

do exist besides EI to fuel GP-based sequential design algorithms dedicated to optimization purposes. The Knowledge

Gradient approach of Frazier et al. (2008); Scott et al. (2011) is one instance of such paradigm o�ering much versatility,

accomodating notably parallel computing (Wu and Frazier, 2016), as well as gradient evaluations (Wu et al., 2017), to

cite a few recent extensions. In other respects, a stream of works mostly associated with machine learning and building

upon the literature on �bandits� (Robbins., 1952; Berry and Fristedt, 1985) has been quite impactful in recent years,

relying notably on the Upper Con�dence Bound (UCB) framework. While UCB algorithms are traditionally analyzed in

terms of cumulative regret (Auer, 2002), with the expansion of UCB and variants thereof for GP-based optimization,

results in terms of simple regret have also been established (Grünewälder et al., 2010; Srinivas et al., 2010, 2012;

de Freitas et al., 2012). Also, informational approaches have been used in further settings, notably to decrease the

entropy of the function's global minimizer or minimum (Villemonteix et al., 2009; Hernández-Lobato et al., 2014),

and a GP-based global optimization algorithm based on the notion of Mutual Information was introduced in Contal

et al. (2014). Overall, current challenges in sequential design of computer experiments for global optimization include

deadling with high-dimensional (Wang et al., 2013; Kandasamy et al., 2015; Binois et al., 2015b; Wang et al., 2017)

and large-scale problems (Krityakierne and Ginsbourger, 2015; Wang et al., 2018), as well as pushing the limits of

multi-�delity (Perdikaris et al., 2016) and also multi-information source (Poloczek et al., 2017) approaches.

2.2. Preferential exploration schemes for further goals

GP models have also be found quite convenient for the sequential design of experiments when the goal is to learn

further quantities or sets involving expensive-to-evaluate functions. In a number of practical situations, it is of interest

to estimate regions of the input domain where a real-valued response takes critical values (be it, e.g., excursion sets

above some prescribed threshold or contour lines), or less ambitiously to estimate the measure of such set (with respect

to some given measure, often a probability measure in reliability applications) or quantiles of the image probability

measure on the set of responses �in cases when inputs are treated as random. To give an excerpt of contributions

around these topics, let us cite Ranjan et al. (2008) and Picheny et al. (2010) where variations of EI and IMSE

criteria are considered, respectively, with a focus on contour line estimation. An overview of neighbouring criteria
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and more speci�cally approaches for sequentially reducing uncertainty on probabilities of excursion were presented in

Bect et al. (2012). Sequential Uncertainty Reduction (SUR) principles such as presented in Bect et al. (2012) were

already tackled in Vazquez and Bect (2009), and have since then been further developed in probability/set of excursion

setting with fast implementations (Chevalier et al., 2014) supported by Kriging update formulae for batch-sequential

data assimilation (Chevalier et al., 2013). Also, SUR ideas were revisited for constrained (Picheny, 2014) and multi-

objective optimization (Picheny, 2015; Binois, 2015), as well as within further developments in sequential design

of computer experiments for set estimation (Chevalier, 2013; Azzimonti, 2016). From the perspective of percentile

estimation (Oakley, 2004), a sequential design of computer experiments for the assessment of fetal exposure to

electromagnetic �elds has been considered in Jala et al. (2016), and also a SUR approach was proposed in Labopin-

Richard and Picheny (2017). Inspired by reliability issues, preferential exploration schemes based on GP have also been

used for re�ning approximations of the optimal instrumental distribution in importance sampling (See, e.g., Balesdent

et al. (2013); Dubourg et al. (2013)) and an algorithm, coined Bayesian subset simulation algorithm, that combines

subset simulation (Au and Beck, 2001) with SUR principles was proposed in Bect et al. (2017) for the estimation of

small volumes of excursion under very limited numbers of evaluations. Also, a Bayesian experimental design approach

relying on the relative entropy between prior and posterior densities of interest under a GP model was used in Wang

et al. (2016) in a failure detection context. In the spirit of UCB methods, level set estimation was addressed in Gotovos

et al. (2013), and recent works adressing preferential exploration for hybrid goals include Berkenkamp et al. (2016),

where safe optimization is sought, and an algorithm called truncated variance reduction was proposed in Bogunovic

et al. (2016) that addresses Bayesian optimization and level set estimation in a uni�ed framework.

3. Concluding remarks

Thanks to the tractability of posterior distributions assuming future evaluations at candidate points, Gaussian Process

models are especially convenient for the sequential design of experiments, and have lead to a number of algorithms and

applications to computer experiments as touched upon throughout this short article. Of course, the practical relevance

of such algorithms relies on the adequacy between the hypotheses made through the considered family of GP models

and the actual function of interest. While the art of designing so-called �initial� experiments was quietly skipped here,

it is a �eld of research per se (Fang, 2006; Pronzato and Müller, 2012; Gamblin et al., 2013; Dupuy et al., 2015).

Indeed, even if MSE/IMSE-based designs give a convenient way to explore the input domain, they assume a known

model; yet, choosing a GP model and estimating its parameters require to perform experiments in the �rst place, a

circularity problem that is well-known in spatial statistics (See, e.g., Stein, 1999; Müller, 2007). The mitigation of

parameter misestimation in sequential optimization using GP models has attracted attention, e.g. in den Hertog et al.

(2006); Benassi et al. (2011). Besides, Student t-processes were proposed as an alternative to GPs in Shah et al.

(2014) where Bayesian optimization was applied with an EI formula for the t-process model, EI being itself averaged

over posterior samples of model parameters. Accounting for and learning non-stationarities in Gaussian and related

frameworks constitute further directions of interest, that have been tackled notably in Gramacy and Taddy (2010);

Damianou and Lawrence (2013); Marmin (2017) and references therein. Of course, several other classes of surrogate

models have been used beyond GP for the sequential design of computer experiments. For instance, Snoek et al. (2015)

tackles scalable Bayesian optimization thanks to a neural network surrogate model. On the other hand, Burnaev et al.

(2016) focuses on sequential design for global sensitivity analysis (Fassò, 2015) using Polynomial Chaos Expansions

(PCE) and Pronzato furthermore considers generalized settings where PCEs are combined with GPs.
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